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Inertial modes with large azimuthal 
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Free oscillations are considered of a fluid rotating with constant angular velocity Q2 
in a rigid axisymmetric container. Modes are sought that vary rapidly in an axial 
( r ,  x )  plane with a length scale O(n-1) times that of the container, where n >> 1. The 
azimuthal wavenumber k > 0 is also taken to be large. The modulated wave modes 
postulated (represented as in (4.1)) prove to have a quiescent zone near the axis. 
Elsewhere their pressure is of a uniform order of magnitude. Their velocity however is 
locally magnified by a factor O(n) near the critical circles. It is argued that for k/n < 1 
the modulated waves eligible as modes in smooth, convex containers are of two kinds; 
one, which generally occurs for continuous frequency bands, being singular and in- 
determinate; the other being like the modes in a sphere. Modes of the second kind are 
determined for eigenfrequencies w N 4 2  !2 for containers whose axia Icross-sections 
are symmetrical about z = 0 and about r = ? z .  

1. Introduction 
Although the free linear oscillations of finite bodies of uniformly rotating inviscid 

fluid have been studied a long time, little systematic is known about them because of 
their abnormal spectral properties. 

The abnormality results from the equation (Poinear6 1885) for the spatial variation 
of the modes being hyperbolic, and it isclearly displayed when the modes vary in only 
two dimensions. For two-dimensional modes, the stream function $eiut has the general 
solution $ = $ O ( ~ - a z )  - $ o ( ~ + a z ) ,  where a ( w )  is a constant and R = Q22 is the 
primary rotation. The existence of modes then depends on the geometry of the paths 
formed by the rays x & az = constant after successive reflections a t  the fluid's bound- 
ary. For example, continuous modes exist in a smooth convex rigid container if, and 
only if, all the ray paths close (Schaeffer 1975). Singular modes are also possible, as we 
shall see later. Modes for specific geometries have been given by Barcilon (1 968) and 
Franklin (1972). These modes are presented as approximations to the axisymmetric 
modes in a thin torus, but they are in effect two-dimensional. Results for forced motion 
follow from general theorems for hyperbolic equations with Dirichlet boundary 
conditions (Bourgin & Duffin 1939; John 1941). In  all these cases the topology of the 
ray paths after multiple reflections is crucial, and this topology can be highly sensitive 
to changes of the boundary or of the ray directions. 

The complexity evident in two dimensions prompts closer scrutiny of modes in 
axisymmetric bodies of fluid, which are more commonly of physical interest. The only 
relevant exact eigensolutions known are for cylinders and cylindrical annuli (Kelvin 
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1880) and for spheres and spheroids (Bryan 1889; Hough 1895; Kudlick 19GG). These 
modes have continuous velocities and discrete densely distributed eigenfrequencies, 
but they may not be typical of other axisymmetric geometries. 

Further progress has been made by restricting attention to  modes with a small 
length scale. Rapidly varying modes in a thin spherical annulus have been studied 
by Stewartson & Rickard (1969) and later, by ray methods, by Bretherton (1964) 
and Stewartson (1971, 1972). Rapidly varying modes have also been studied in a 
geomagnetic context by Malkus (1967)) Roberts (1968) and Busse (1970). Malkust 
investigated the high-order asymmetric modes in a sphere in relation to the westward 
drift of the earth's magnetic field. Roberts and Busse investigated rapidly varying 
asymmetric modes, though for a diffusive, Boussinesq fluid, both in a sphere and 
in a cylinder, in relation to the geodynamo. 

The present paper deals with arbitrary axisymmetric geometries, by ray methods. 
The azimuthal wavenumber Ic is taken to  be large. An earlier paper (Wood 19776) 
dealt with the case Ic = O( 1). The main differences here stem from the curvature of the 
ray paths in an axial plane. (When k = O(l ) ,  these paths are effectively straight.) 
One consequence is a still zone about the axis. A second is that the patterns of the ray 
paths after multiple reflections a t  the boundary are less predictable, especially when 
k/n is not small. 

The conclusions are collected a t  the end of the paper. 

2. Formulation 
We consider oscillations in finite, rigid axisymmetric containers S that  rotate with 

constant angular velocity 8 about their axis of symmetry. The fluid is assumed to be 
inviscid and of constant density. The velocity u of the fluid relative to S is taken to be 
small relative to SZ x r and to  vary as 

u = Re {U(r,  z)ei(wt+k@))), k > 0, (2.1) 

the azimuthal angle Q being measured relative to  (a frame fixed in) 8, whilst the 
corresponding perturbation pressurep due to  the motion relative to X is taken to vary 
as 

This pressure p satisfies PoincarB's equation 

p = Re{r-+q(r, z)ei(wt+k4)}. (2.2) 

(PoincarB 1885). So, the pressure amplitude q satisfies the equation 

where 

The velocity amplitude U = ( U ,  V ,  W )  is related to q by 

t Certain omitted modcs wrre given subsequently by the present author (Wood 1977a, b ) .  
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Hence, the vanishing of the normal velocity a t  the boundary, defined say by r = S(z), 
implies that 

where 
q,+a2S'qz+ yqr-l = 0 on S, (2.9) 

(2.10) y = 2Qw-'k - 4. 
For brevity, U and q will be called the velocity and pressure. Eigenmodes exist only 
if 0 6 101 < 2Q (cf. Greenspan 1968). So a is real, and q can be taken to be real. 

3. Free oscillations in cylinders and spheres 
As a guide to the possible behaviour of rapidly varying modes in other geometries, 

a preliminary discussion is given here of the high-order modes in a cylindrical annulus 
and in a sphere. 

The free oscillations in a rigid cylindrical annulus, 0 c R, < r < R,, 0 < x < n, are 
determined by 

(3.1) 
where 

q = nbi[Jk(anr) - BY,(anr)] cos nz, 

awnR, J;(anR2) + 2QkJk(anR,) 
aonR,YL(anR,) + 2QkYk(anR2) 

awnR, J,':(anR,) + 2Qk Jk(anR,) 
awnh', Yi(anR,) + 2RkYk(anR,) * 

(3.2) - B =  - 

For arn 
approximation by 

1 and fixed values of klwn $. 1,  the pressure is represented to a first 

q N coJ 1 - h2a-2r-21-k Re [A-einv- +A+ einv+], (3.3) 

A = k/n, (3.4) 

where co is a constant O( i), 

inv* = i x T  (h2--2r2)~_+hcosh-1(h/ar),  A- = 1, A ,  = 2B for ar < A, (3.5) 

nv* = ~ z + ( ~ r ~ r 2 - h 2 ) ~ - h c o s - ~ ( h / a r ) - ~ n n ,  A- = A +  = 1+iB, for ar > A. 
(3.6) 

For wavenumber ratios (A = )  k/n < aR,, the pressure is uniformly O(1). But, for 
ratios k/n > ah',, the pressure is O(1) only where klan < r < €2, and (apart from a 
thin transition zone) is exponentially small O(e-lO(n)l) elsewhere. Thus (for k/n > 
aR,) the wave is effectively confined to the outer annulus klan < r < R,. This wave- 
trapping occurs in a circular cylinder whenever n/k = O(1). 

The eigenvalues a must be greater than klnR,, because (3.2) has no solutions if the 
exponential approximation (3.5) applies a t  r = R, and R, (or a t  r = R, alone if R, = 0). 
So the eigenfrequencies are bounded by 

1.1 < 2Q( 1 + k2/n2Ri)-8, (3.7) 

and the quiescent zone (where the pressure is O(e-'O(")l)) never extends to the outer 
cylinder. 

As one would expect, the presence of the rigid boundary in the quiscent zone has 
little effect on the trapped wave. When a quiescent zone occurs in an annulus, the 
eigenfrequency and the velocity are determined with an error O(e-'o(nj ) by putting 
B = 0 in (3.1) and (3.2) and ignoring the boundary condition at  r = R,. To this accur- 
acy, the same trapped wave could also occur in the circular cylincier 0 < 1' < R,, the 
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only significant change to the overall flow being the increased extent (namely 
0 < r < k/an instead of R, < r < k/an) of the associated quiescent zone. 

Lastly, it  might be noted that the characteristics ( r  k ax = const.) of the eigenmodes 
do not always form closed surfaces after repeated reflections at the boundaries and the 
axis. For the cylindrical annulus, closure occurs only when r = 7r-l(RZ - R,) cot a i s  a 
rational number. However, the eigenequation defines a,  and hence I’, as a continuous 
function of R,, for given values of 12, 2 0 ,  k, n and a given number of cells in the radial 
direction. Hence, as R, varies, both closure and non-closure occur. When k = 0,  the 
same conclusion applies to the paths formed by the trajectories of the group velocity 
in a meridional plane (4 = 0 )  after repeated reflections a t  the boundaries and axis, 
because the trajectories of these axisymmetric modes coincide with the characteristics. 

We turn now to the eigenmodes in a rigid sphere Irl < 1, which are given by 

q = (constant) x rtP:(cos O) P:(cos@) (3.8) 

rcos8 = sinOsincD, zsin8 = cosOcos@ (3.9) 

(cf. Greenspan 1968)) where 

with 0 < 0 6 Q7r - 8 < (D < Qn- + 8. The angle 8 here is the semi-angle, cot-l a, of the 
characteristic cones of Poincar6’s equation (2.4). The eigenfrequencies are determined 
by the equations 

w = 2Qsin8, kP:(sin8) = cos8d Pk(sin8)ldO. (3.10) 

For large n and fixed values of A, = k/(n + Q), 

2 - cosz @-a exp[ (n + $)~(sinS)], o < cos B < A,, (3.11) Yo 2c , (cos28-A~) -~cos [ (n+$)x (s inB) -& r ] ,  A, < cos0 < 1, (3.12) 
Pk(sin8) - 

where c1 is a constant which will be taken to be O( 1)) and 

cosh-l[( 1 -At)-* sin 81 - A, cosh-l [A,( 1 - A;)-3 tan 81, 

cos-1 [( 1 - A;)-* sin 81 - A, cos-1 [A,( 1 - At)-* tan 81, 

o case < A,, (3.13) 

A, < case G 1 (3.14) 
1 X(sin0) = 

(Thorne 1957). A short calculation shows that the exponential approximation (3.11) 
provides no solutions to the eigenequation (3.10). So, the eigenvalues of 8 are such 
that cos 8 > A, and the eigenfrequencies are such that 

(wI < 2!2[1- k2(n+Q)-2]3. (3.15) 

Under these conditions, the eigenvalnes of 8 are given to first order by 

tan [(n + 4) X(sin 0) - in] = - A, (cosz 8 - Ai)-t. (3.16) 

The corresponding approximations for the pressure q for large n and fixed values of 
k/(n + 4) are given by 

q N 2c,21sin2O-h~J-~(si~iz@-ht)-~Re[ein”+ + A  - einv- I, (3.17) 

(3.18) 

(3.19) 

where 

nv, = (n + $) [ ~ ( C O S  @) - ix(cos O)] - &r, 

nv+ = (n+ 4) [ ~ ( c o s ~ )  k ~ ( C O S  @)I - $n, 
A- = 0, 

A- = i, 

sin 0 < A,, 

sin 0 > A,. 
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The real part ( n + i ) ~ ( c o s @ )  of the exponent inv+, given by (3.18) for sin@ < A,, 
vanishes when sin@ = A, and decreases as 0 decreases. So, when n / k  = 0 ( 1 ) ,  wave 
trapping recurs. Transition now occurs near where sin 0 = A,  at the spheroid 

r2AC2 cos2 8 + z2( 1 - Aip-1 sin2 8 = 1.  (3.20) 

The pressure q is O(1) farther from the axis than the thin transition layer and is 
O(e-lo(n)l) nearer to the axis. The spheroid meets the sphere where r = A,. So, since 
A, < cos8, the entire fluid axis r = 0, IzI < 1 lies in the quiescent zone; whilst the 
critical circles r = cos 8, z = 5 sin 0, a t  which the characteristic cones graze the sphere, 
lie in the trapped wave. The insensitivity of the trapped wave between two cylinders 
to the presence of the inner cylinder suggests that  the trapped wave in a sphere (where 
sin 0 > A,) may only be slightly affected by imposing a rigid axisymmetric boundary 
in its quiescent interior (where sin 0 < A,). In  particular, each of the eigenmodes in 
the sphere with A, > R, cos 8 might be surmized to have a counterpart with almost the 
same eigenfrequency and trapped motion in a spherical annulus R, < )r 1 < 1.  

The velocity amplification that arises near the critical circles when k = O( 1) (Wood 
1977b) is reproduced in a similar way when k + 1.  Consider the critical circle (CAT), 
r = cos0, z = sine, a t  which 0 = 0 = in -8 .  Because of the relative crowding of 
characteristic cones after their reflection near C, parallel to the tangential cone at  
C,, the quantity a( Q, - @)/& becomes infinite a t  C,. Consequently at C, the gradient 
Vv- = co and the velocity is large. On closer examination, we find that the velocity 
amplitude near C,,, is given, to a first approximation, by 

U = c: IR-lsec20[ - i sin @ , I ,  i cos 01 ( n + ~ ) s i n { ( n + ~ ) s e c 8 ( c o s 2 e - h ~ ) ~ ( 0 -  @)I. (3.21) 
0 - @  

Hence the velocity amplitudes a t  distances O(n-2) from the critical circle in a direction 
normal to the boundary are a factor O(n)  greater than the velocity amplitudes else- 
where in the critical zone. 

A generalization of the eigenfrequency equation (3.16) to a non-spherical configura- 
tion is given in $ 5 .  

4. Modulated waves in axisymmetric containers 
Free oscillations are now considered for smooth convex axisymmetric containers 

( r  = S(z) ,  IzI < 1 )  of arbitrary shape. As above, approximations are sought for modes 
that vary rapidly in each axial plane (with a length scale n-1) and vary rapidly (as 
ezkQ) with the azimuthal angle 4. The ratio A = k / n  is taken to  be fixed. Forsimplicity, 
containers with vertices a t  z = 1 or - 1 are excluded. Complications that might arise 
if a characteristic and its successive reflections converge progressively into a vertex 
or corner are thus avoided. (The cylindrical containers of 5 3 do not give rise t o  such 
difficulties because of their sides being either parallel or to normal to Q.) 

The assumption that the modes can be represented as a pair of modulated waves 
(as in (4.1)) is seen to lead to generalizations of the salient features found above for the 
sphere and the cylinders. In  particular the fluid near the axis is again almost still. 
Also the velocity amplitudes near the critical circles are again found to be a factor 
O(n)  greater than elsewhere in the region of the modulated waves. To deal with the 
( h a y  of the modulnted waves at  the edge of the axial zone, the variation of rfq along 
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the axis is assumed to have a quasi-periodic representation (as in (4.13) and (4.14)). 
This axial representation is matched to the modulated waves via an  integral solution 
for the flow in the double-cone (IzI < 1 - ar),  which forms the domain of dependence 
of the hyperbolic equation (2.4) on the axial data. The method requires the double- 
cone to overlap the region of modulated waves. However, the evidence points to  the 
modulated waves penetrating to within O(k/n) of the axis. So an overlap can be 
anticipated for sufficiently small values of kln. The integral then yields simply an 
approximation for the velocity in the transition zone and an order-of-magnitude 
estimate for the velocity in the quiescent zone. A simple argument extends these 
results to the parts of the transition zone and quiescent zone outside the double-cone. 

Determination of the phases (aj(r ,  2 ) )  of the modulated waves is, in general, ham- 
pered by the intricacy of the patterns of the ray paths (for the meridional component) 
of the group velocity formed aft'er multiple reflections a t  the boundaries. Consequently 
the phases have been determined explicitly (at the boundary) only for configurations 
with relatively simple ray patterns. A general method of calculating the phases 
aj(r ,  z )  for k < n is proposed (in 5 5 ) ,  which appears feasible (in principle) provided that 
no singularities prove to emanate from the poles or the critical circles. This contin- 
gency does not arise for the particular case treated explicitly or for the sphere, but its 
absence has not been generally established. To the extent that  the feasibility of deter- 
mining q ( r ,  x )  and the associated phase f(z) (in (4.14)) has not been established, the 
validity of the modulated wave representation, and the associated assumptions, 
remain unproved, and the conclusions below should be regarded as tentative. 

(a) Oscillatary zone : ray method 

With the sphere and cylinder as a guide (and the cautionary remarks above in mind), 
we postulate a region of modulated waves in which the pressure q is represented by 

where the phases q ( r ,  z )  are real and the amplitudes are O( 1) and have asymptotic 
expansions in descending integral powers of n. For definiteness the signs of the vj are 
chosen so that aq/:ilaz 2 0.  Further, we assume that each of the modulated waves 
(for j = 1 or 2) in (4.1) satisfies the equations of motion independently. Such assump- 
tions underlie the so-called ray method developed for geometrical diffraction (Keller 
1958). 

The properties of three-dimensional modulated (inertial) waves are worth recalling 
here. If such a wave is represented to  leading order by 

p = A ( x )  exp [i(nX(x) + w t ) ] ,  (4.2) 

its phase C and amplitude A satisfy the dispersion relation 

W2K2 = 4(K.s2)2 

div(A2XzV) = 0, 
and the amplitude equation 

where K = nVX is the local wavenumber and 

V = V,w = (Ex, C,, -aZC,)/na ( d a / d w ) X i  (4.5) 
is the local group velocity. The wavenumber K and the group velocity V are constant 
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FIGURE 1 .  A typical oscillatory zone 0 and quiescent zone E ,  separated by a caustic, and 
typical trajectories (6  = gl, &) of the phase equation (4.6). 

along each straight ray in the direction of V (since the dispersion relation (4.3) is 
independent of x and t ) .  Further, the phase C is constant on each such ray (because 
(4.3) is a homogeneous quadratic form in the components of K). Finally, since CEV is 
constant along each ray, the conservation equation shows that A2 is inversely propor- 
tional to the cross-sectional area of any thin tube bounded by the rays. 

For the modulated waves appropriate to the axial symmetry in (4.1), the phase C 
becomes aj(r, x )  + A$ and the phase and amplitude equations of the three-dimensional 
waves reduce to 

u: - a%: + h2r-2 = 0,  

(a,A2),- a2(azA2), = 0,  (4.7) 

where a = 5, A = Aj a n d j  = 1 or 2 .  It follows that the trajectories of the component 
of the group velocity in the meridional plane (q5 = const.) are the hyperbolae 

( x - E ) ~  = u2r2-A2<-2, E = const., 5 = const., (4.8) 

where 6 = 9,) and that the phase u and amplitude A are given by 

where the cos-l((<-z)/ar> is in the range (0 ,  n) and 7 and A0 are constant on each 
trajectory5 = constant. Since $z depends only ong, (4.8) and (4.9) imply that 

(4.10) 

Thus, the phase and, to a leading order, the amplitude of each wave (for j = 1 or 2) 
are determined apart from the two parameters ~ ( t )  and AO(6). I n  keeping with 



434 w. w. Wood 

equation (4.4), the factor (A/Ao)2  in (4.9) is inversely proportional to the distance 
between neighbouring trajectories. Where two trajectories coalesce, the amplitude A 
given by (4.9) is infinite and the modulated wave approximation fails. Otherwise 
the modulated waves, each of which comprises two travelling waves, presumably 
propagate freely along the trajectories. At the solid boundary, the waves reflect 
without change of form (as will be plain below). So the oscillatory region must include 
the entire length lying in the fluid of any trajectory as defined by (4.8) and all its 
reflections. The assumption of two modulated waves (the least number that allows for 
reflection) in (4.1) means that there are two trajectories through any point r ,  z in a 
meridional plane. So any boundaries in the fluid of the oscillatory region must be 
envelopes of the trajectories (to within distances O( I ) ) .  

One such boundary must separate the modulated waves from the z axis. The apex 
of each (hyperboloid) trajectory< = const. is a distance k/ctnC(<) from the axis, which 
is non-zero (for k 1) if w + 0 (i.e. ct + co) and n6 is finite. We can assume (L) $. 0 
(for k 9 1) ,  since the only steady modes are the swirling modes (U = (0, V ( r ) ,  0 ) )  for 
k = 0. If the axial wavenumber nt; were infinite, for < = 5, say, the modulated wave 
approximation would imply infinite velocities in the fluid along the trajectory to 
= constant. Infinite velocities of this kind do not appear in the sphere or the cylinder 
though they may possibly occur for certain frequency bands in other containers, as is 
noted in Q 6. However, can be infinite, a t  most on isolated trajectories, by virtue of 
its definition as 5 = q5z. Hence, the oscillatory region is separated from the axis of 
symmetry by an envelope ( r  = y T ( z )  say) of the trajectories, which meets the axis 
a t  most a t  isolated points (figure 1).  The zone r < rT(z)  excluded from the oscillatory 
region hasa radius O(k /n) .  The excluded axial zone will be presumed to  be quiescent, 
and to some extent this will be confirmed below. 

Other modulated waves that are represented as in (4.1) and have the phase 
C = v ( r ,  z )  + hg5 appropriate to axial symmetry also avoid the axis. We refer here 
specifically to waves propagating relative to a steady, homogeneous medium that 
is isotropic in planes z = const., so that the dispersion relation has the form 
D(C,, C: + X i ,  u) = 0. For such waves, the wavenumber K( = nVw) and the group 
velocityV( = V,w) are again constant on rays in the direction of Vand the components 
of K and V in planes z = const. are parallel. The nearest distance to the axis of any 
ray is thus 

r ~ / (  Y: + Y$)& = Y K ~ / ( K :  + K $ ) &  = Ic/ng(u,), (4.11) 

where g(uz) represents n - l ( K ;  and is determined by the dispersion relation. 
Hence, provided that g(a,) is finite, the modulated waves with k + 1 again avoid the 
z axis. For the inertial waves, g = For two-dimensional modes, as say the acoustic 
modes in a cylinder considered by Lord Rayleigh (1910) in relation to the whispering 
gallery phenomenon (Keller and Rubinow 1960), g is a constant. 

( 6 )  Quiescent axial zone and transition zone : integral method 
We now consider the axial region not penetrated by the modulated waves. In the 
expectation that the modulated waves can be determined (in principle) independently 
of the flow elsewhere, we regard the modulated waves as known and seek approxi- 
mations that match them. A minor exception to this concerns the phase jump in a 
modulated wave that passes near to the boundary ( r  = ~ ~ ( 2 ) )  of the axial region, 
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which is needed in the determination of the modulated waves, the amount of this 
jump is derived f rom the matching. 

To find approximations matching the modulated waves, we use the general solution 
for the pressure q given by 

r m  
p = r3 J .. F(Z  - ar cos x) cos kxdx,  

0 
(4.12) 

where F(x) is defined (sufficiently) by 

limr-k-tq = n( -a/2)k(k!)-ldkF(z)/dzk. (4.13) 

This solution expresses r-k-iq in terms of its axial values and holds in the domain of 
dependence IzI c 1 -ar of the axis. For the cylinder and the sphere, the function 
F ( z )  can be approximated in the form 

F ( z )  = Re[A*(z,n)einf@)], (4.14) 

r-0 

where f(z) is real, A* has an asymptotic expansion 

co 

A* = x A z ( 2 ) n - m  
m=O 

(4.15) 

and both the phase and the amplitude coefficients A$@) are independent of n. We now 
suppose that F(z )  can be approximated in precisely the same way for the containers 
under consideration. If the functions f ( z )  and A$(z) are sufficiently smooth, the integral 
solution (4.12) then yields approximations appropriate respectively to the oscillatory 
zone, to the quiescent axial zone and to a thin intermediate zone. The axial data 
function F ( z )  can be chosen so that the approximation to the integral for the oscil- 
latory zone matches the original modulated waves (4.1); and the remaining approxi- 
mations to the integral then supply the required approximations for the quiescent 
zone and the transition zone that match the original modulated waves. The relevant 
detail is as follows. 

From (4.12) and (4.14), we have that 

where 

q = &r: Re (In A*(EJ exp {in[ f($) - Ax]} dx] , 
--n 

t; = z-arcosx. 

(4.16) 

(4.17) 

The phase n(f(6) -Ax)  in (4.16) is stationary if 

arf'(g) sinx = A. (4.18) 

If the roots x = xj of equations (4.17) and (4.18) are simple, and xi -xi < 1 for i 9 j, 
the stationary phase approximation yields 

q - (nr l2n) t  2 Re {A*(Cj) I g5jl-4 exp [inf (5) - ikx, + tins,]} + O(n-$), (4.1 9) 

+j = (z-Cj)f'(t;j) + ~ ~ f ~ ( ' ~ j ) [ f ) ( 5 ) 1 - ~ ,  tj = ~ ( x j )  (4.20) 

and si = sgn Thus the pressure q is represented as a sum of modulated waves. The 
original assumption that q comprises just two modulated waves in the oscillatory 
region means that the sum in (4.19) has just two t,erms (i.e. j = 1,2) .  (The stationary 

j 

where 
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phase equations (4.17) and (4.18) are equivalent to the former equations (4.8) for the 
trajectories 6 = const., and the assumption just mentioned implies that where these 
equations have simple roots 5 = 

By comparing the integral approximation (4.19) for the pressure q to the modulated 
wave equations (4.1), (4.9) and (4.10), we see that it matches the original representa- 
tion of q in terms of the modulated-waveapproximation to leading order provided that 

they have just two roots.) 

(4.21) 

The amplitude A* and phase f of the axial data function in the integral are thereby 
related to the parameters of the original modulated waves (which are presently 
regarded as known). The equations (4.21) also identify discontinuities in the wave 
parameters on a trajectory& = const. at  its point of contact r = rT (&), x = z T ( t j )  with 
thc envelope. On the envelope, 

ZT = E j  - h25’(Ej) C--”(Ej,, (4.22) 

so that the r$j in equation (4.19) vanishes and the sj in equation (4.21) changes sign. 
Hence, the equations (4.21) imply that 

r2(5)  = r1(5), A%) = i A X ) ,  (4.23) 

where the suffixes 1 and 2 denote the values on a trajectory [ = const. for points 
x > x T ( 6 )  and x < ~ ~ ( 5 )  respectively. Thus the phase parameter q(5) a t  a point z on the 
trajectory is unchanged after the point has passed x = zT, whilst the corresponding 
(complex) amplitude changes by a factor i. 

The approximation (4.19), and its consequences, do not apply near the envelope, 
where the roots 6 = of the stationary phase equations nearly coincide. After a short 
calculation, the appropriate approximation to the integral (4.16) for points near the 
envelope is found to be 

q(r,  zT)  - nr*Re{A*(E;,) eind)Ai(c) (4nK)-f, (4.24) 
where 

CT = &T(ZT), ZT), r - T T ( Z T )  = oh-9 (4.25) 
and 

(4.26a) 

d = f ( E T )  - Ax, - ( r  - rT(~T))r-l{rf’(tT;T)l2 - A2P,  (4.263) 

h - l ~  = h 2 . m T )  u w 1 - 3  + 3(zT - ~ m )  [ m w  - 1 .  ( 4 . 2 6 ~ )  

After using equations (4.21) to express the f and A* in equations (4.24) to (4.26) in 
terms of the parameters 7 and Ao of the modulated waves, we get the required approxi- 
mation for the pressure q in the transition layer that matches the modulated waves. 
Clearly, the velocity in the transition layer is O(n-8) and its width is O(n-)). 

For points in the quiescent zone between the transition layer and the x axis, the 
equations for stationary phase have no roots for 5. The integral (4.16) can then be 
estimated simply by integrating by parts. In this way, we find that the pressure 

q = O(n-m) (4.27) 

and the velocity is O(rrm+l) ,  where m is an integer, provided that the phasef(5) of the 
axial data function and the coefficients AZ(E), 0 < s < m - 1, of the asymptotic series 
for the associated amplitude A* have continuous derivatives of orders m+ 1 and 

c = K-1 - YT ( Z T ) )  r-l{ 1 + (CT - ZT)f”(ET) Lf(E*)l-l}> 
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m - s respectively and the A, (5) are bounded. [To express this condition in terms of the 
modulated waves requires a higher order of matching to the axial data function than 
has been presented. But it can be anticipated that the condition would hold if the 
phases gj (r ,  2) of the modulated waves and the coefficients of the Poincar6 series in n 
for ( a )  the radius rT(z )  of the envelope and ( b )  ( r  - rT(z)) t  x (the amplitudes Aj (r,  z )  of 
the modulated waves) are adequately differentiable.] For the sphere and the cylinder, 
m can be taken to be arbitrarily large. 

The integral solution (4.16) applies only in the domain of dependence IzI < 1 - ar. 
However, the approximation (4.24) for the transition zone, with f(5) and A*(5) 
expressed in terms of ~ ( 5 )  and A@, and the connection formulae (4.23) could be 
derived by the boundary-layer method developed (Buchal & Keller 1960) for the 
transition layer near a caustic in diffraction theory. So derived, these results are seen 
to stem from a local approximation which is governed near any point r = rT, z = zT 
on the envelope by the modulated wave near that point. Consequently, the results 
must hold independently of whether the point rT,  zT is in the domain IzI < 1 - ar. In 
the boundary-layer method the pressure for n > 1 is assumed not to be exponentially 
large in the axial zone at  distances O(1) from the envelope, but this assumption 
(which serves in place of the condition that the velocity at  r = 0 is finite) is plausible. 
From here on, then, we take the transition approximation (4.24) and the connection 
formulae (4.23) to apply along the entire envelope, irrespective of T T ,  zT being in 
the domain of dependence of the axis. 

For the same reason, the degree of smallness of the pressure q just after crossing the 
transition zone near the point rT, zT on the envelope should not depend on TT, zT being 
in the domain of dependence of the axis. So, we can expect the estimate (4.27) to 
apply to the whole quiescent zone, providing that the associated conditions on the 
modulated wave given in parenthesis below (4.27) hold near the entire envelope. 

In the sequel some support for the various assumptions made will be got by calculat- 
ing the modulated waves for axisymmetric containers with certain reflection sym- 
metries and for w 2: J2 SZ and k < n. First, however, we consider the reflection condi- 
tions at  the boundary and a consequent magnification of the velocity near the critical 
circles where the characteristic cones of PoincarB’s equation (2.4) touch the boundary. 

( c )  Rejection conditions 
At the solid boundary, r = S(z) of the oscillatory zone, the condition (2.9) implies that 

(4.28) 

(4.29) 

Hence, the reflection relations for the amplitude and phase are given by 

IAlPlI = IA2P21(1+ o(n-l)), (4.30) 

nvf = f nv,* + (an oddinteger) T + O(n-l), (4.31) 

where nu: = na; + arg Aj + arg Pi + 4.. To allocate the appropriate sign to nu; in 
(4.31) wenotethat 

cj = (dnbj/dz)/[l + (5j-z)r-1S’(z11, (4.32) 

where g b j  = q (S(x), z ) .  Hence, since 6 > 0 by definition and 13 = 5 to leading order, 
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the ambiguous sign in (4.31) is + or - according as the signs of 1 + (5 - x )  +S'(z) for 
j = 1 , 2  are the same or different. 

The reflection geometry near a circle C where a characteristic hyperboloid is 
tangential to the boundary is special and causes an increase in the order of magnitude 
of the velocity. If a nearly tangential trajectory passes to within a distance O(A8)2 
from C it meets the boundary a distance O(As) from C. Thus the nearly tangential 
trajectories (6 = 5, say) are more closely spaced than the trajectories (6 = E2 say) that 
they engender after reflection. This relative proximity causes the gradient of the phase 
(r, normal to the boundary to tend to infinity as (A8)-,, as may be seen by using (4.9) 
and (4.31). In particular, c, = co on the grazing trajectory c, = constant. So the 
tangential hyperboloid degenerates to a characteristic cone of Poincart5's equation. 

At first sight, the singularity in fll( = ulz) at the critical circle C seems to make the 
velocity infinite there. However, this infinity is not realized because of a restriction 
on the value of nu + arg A a t  the critical circle which introduces a compensating zero. 
Suppose a nearly tangential trajectory [ = 5, near the critical circle z = zc meets the 
boundary at  the circles A ( x  = z, > zc)  and B ( z  = zB .c zc). The denominator in 
(4.32) can be shown to vary as x - zc for Iz - zcI < 1 and j = 1 because [, varies as 
Iz-zcl and IS'(z,)l = l/a. So dglb/dx is O(1) and non-zero at C but changes sign 
(discontinuously) there. Consequently, opposite determinations of the ambiguous 
sign in (4.31) apply a t  A and B. Hence, on combining the reflection relations (4.31) 
at A and B and letting A -+ B (and assuming that the wave parameters AO, 7 and fl 
vary continuously with[,), we find that 

lim (rial + arg A, + arg Pl)A + lim (ncr, + arg A, + arg Pl)B 
ZA+ZC ZB-+ZC 

= (oddinteger) n + O(n-l). (4.33) 

From (4.9), we see that Ylb(ZA)  -+ Ylb(zB)  as A -f B, where 

Whilst, from (4.29), we find that 
nvjb(z) = nqb(z)+argAj(S(z),z). 

(4.34) 

(4.35) 

where Q denotes the (finite) value of lim fl,([,,)~x,-zc~. Hence, equation (4.33) 

implies that 
nvlb(zC) = Ncn+ O W ) ,  (4.36) 

where N, is a large integer of O(n). 
The velocity near the critical circle can now be assessed as follows. For points on 

the trajectory A B  near the critical circle, we have from (4.9) and (4.32) that 

Thence, to a first approximation, the velocity amplitude on A B  becomes 

Zd-WO 

au,/ar = (xfl, (1  + o( l)), c1 = [dulb(xg)/dZ]( 1 + o( 1 ) )  (1  + (xS'(zg))-l. (4.37) 

(4.38) 

where 2 = zc-zB and n* = ndvlb(z)/dzlzrzc. The factor Z-lsinn*Z is O(n) when 
2 = O(n-l). Hence, as was foreshadowed above, the velocity is amplified by a factor 
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of O(n) within distances of O ( d )  from the critical circle in a direction normal to the 
boundary. 

5. Determination of modes for k -g n and w 2: 42 i2 
The determination of the modulated waves (4.1) in the oscillatory zone hinges on 

the pattern of the ray paths in the axial plane after repeated reflection at  the boundary. 
The relevance of such a pattern is more obvious when the modes are axisymmetric 
( k  = 0) and the rays coincide with the characteristic lines z - t; = f ar. The quiescent 
zone is then replaced by a thin axial zone of width O(n-l) and the modulated waves 
can be regarded as being reflected at  the axis (Wood 1977 b ) .  So the pattern in question 
is the one formed after repeated reflection a t  the boundaries end the axis. To leading 
order, the phase is constant along each ray, undergoes a change of in on reflection at 
the axis and is unaltered on reflection a t  the boundary, save for a change in sign a t  
reflections between either pole ( z  = ~t: 1) and its adjacent critical circle. In this case 
two topologies can be distinguished. 

In  one of these topologies, the ray pattern contains one or more closed paths- 
closure being represented by an equation 

zi = Zf@i, 4, (5.1) 

where z = xi and z = zf represent the initial and final boundary points of a ray path 
after a certain number of reflections. The frequencies w1 for which this topology occurs 
generally form continuous bands. In the alternative topology, appropriate to the 
frequencies o2 ( Iwzl c 2sZ) outside these bands, a continuous function r ( w )  can be 
defined and either all or none of the ray paths close depending on whether I? is or is 
not a rational number. For these frequencies w2, it is conjectured that r ( w , )  is not 
normally constant, so that every eigenfrequency is close to a frequency w2 for which 
all the ray paths close, and that for k/n 4 1, this near closure generally allows a 
continuous mode to be constructed. The basis for the two topologies is explained in 
9 6; the basis for the construction is as follows. 

For exact closure, with o = w* and k = 0, the change in phase of one of the charac- 
teristics ( j  = 1, say) at  the boundary point x = xi  after a cycle of reflections at  the 
boundary and the x axis is of the form 

na,, (Zf) - nglb (4 = m, (5.2) 

where N is an integer. (The possibility of a plus sign in place of the minus sign in (5.2) 
can be discounted on geometrical grounds.) The change in phase after traversing a 
closed contour must be a multiple of 2n; and this can be achieved by a small change in 
the frequency w which slightly displaces the end-point z = zf of the trajectories formed 
by repeated reflections, starting with the j = 1 trajectory at  z = xi. The phase change 
(5.2) after the repeated reflections is unaltered to leading order by a slight change in 
w and k/n save possibly for trajectory paths that pass close to the poles ( r  = 0, z = f 1) 
or the critical circles. So, the periodicity condition implies that, to leading order, the 
change in the phase associated with the slight displacement of zf is 

nalb(xf(zi, o, A ) )  - naIb(zf(zi ,  a*, 0)) = 277 x (integer). (5.3) 
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Whence, to a first approximation, 

This equation determines a first approximation to the phase ulb a t  the boundary, 
and hence to the phases of the modulated waves in the interior for k/n  < 1.  The corres- 
ponding amplitudes I A1 of the modulated waves can be taken to be uniform to a first 
approximation. 

This method is applied below to a class of containers for which exact closure occurs 
at a particular frequency (when k = 0) because of suitable symmetries. The containers 
in question have meridional sections with mirror symmetry about the lines z = 0 and 
z = f r .  All the ray paths then close when w = J2 R (a = 1) and k = 0 after a t  most 
three reflections a t  the boundary, and for k / n  4 1 the modes and the eigenfrequencies 
near w = 4 2  R can be calculated using (5.4) as a first approximation. The restriction 
(4.36) on the phase a t  the critical circles and a symmetry condition on the phase a t  the 
equator provide the two side conditions needed to specify the eigenfrequencies and 
fix the arbitrary constant after integrating (5.4). 

For azimuthal wavenumbers such that n + k + 1, the trajectories turn rapidly, 
with a radius of curvature O ( k / n ) ( =  O(h) ) ,  at a distance O(h)  from the axis. The 
envelope is then a distance O(h) from the axis, and is approximately the locus 

ZT = 5, rT = ~ / 4 ( 5 ) ,  (5.5) 

of the apices of the trajectories 5 = constant. 
The branches z > 5 and z < 5 of each trajectory 5 = const. will be called the + and 

- trajectories respectively and variables associated with either will be distinguished 
where necessary by a + and - suffix. Away from the axis, where r-l = O ( l ) ,  the 
trajectories are given approximately by 

z - & = f &r[2 - h2(ar&)-2] + O(h4), (5 .6 )  

(5.7) 

(5 -8 )  

and the phase, amplitude and radial wavenumber n p  are given by 

u& = vLt T h2(a&r)-'+ O(h4), A* = A**e*in/4+ O(h2) + O(n- l ) ,  

p& = T a&[l- $h2(a&r)-2J + O(h4),  

where A** is a constant along each trajectory<, = g-. To leading order, the phase ff 
and the complex amplitude A are constant along each + or - trajectory, save where 
r = O(h) ,  but the amplitude changes by a factor i on passage round the apex of any 
trajectory from points where T > h on the negative branch to points where r + h on 
the positive branch. 

We consider next the reflection relations (4.28) to (4.31) for h < 1 and r-1 = O(1).  
From (4.29), (4.32) and (5.8),  we get 

P* = T a: dab*/dz - yi(nr)-l+ O(h2). (5.9) 

The phase relation (4.31) implies that  du,+/dz = dub-/dz + O(n-I), where the suffix 
b again denotes the value a t  the boundary r = S(z). Hence the reflection relation for 
the magnitude of the amplitude reduces to 

IA+I = 1A-I ( 1  + O(n-l) + O(h2)) .  (5.10) 
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Z 

FIGURE 2. Characteristics (AB and BD), of the phase equation (4.6), used in 
determining the eigenfrequencies. 

The quantities arg P+ that occur in the reflection relations (4 .31)  are given by 

O(h) for z < zf, \ 
(n+0(1) for z > zf,j 

1 O ( h )  for z < z:, 1 n+O(h) for z >z,N, 

arg P+ = 

arg P- = 

(5.11) 

(5.12) 

where z = z,", z,", with z," < z,", are the values ofz at the two critical circles. 
To determine the phase we consider the path, after one reflection, of a negative 

trajectory which meets the boundary a t  a circle A with co-ordinates rA, zA, where 
0 < zA < 2:. This negative trajectory meets the boundary a t  a circle TB, zB, where 
zB > z,", and in general reflects as a positive trajectory which meets the boundary a t  
a circle D with co-ordinates rD, z,,, where 0 > zD > zf (figure 2). If h = 0 and €J = )n 
(a  = 1), the trajectories reduce to the cones z = f r + constant, and because of the 
container's symmetries the circles A and D are mirror images in the plane z = 0. For 
small h and 0 N n / 4 ,  a straightforward perturbation calculation shows that 

wherecY=a-l < 1 ,  
- z D - z A  = A, 6+A162+O(83), (5 .13 )  

A0 = 2 ( r A + Z ~ 8 ' ) / ( 1 - S ' ) >  ( 5 . 1 4 ~ )  

S' 
A -  '2 2{(rA - z A )  ( l - # ' )  ( 3  +s') + ( rA +'A) ( l  +s')2> 1 - ( 1 - 8  ) 
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and the S' and S" here are evaluated at  z = zA. The expansion in 8 appears to be 
regular for fixed zA, 0 c zA < z r ,  providing the container is suitably smooth. 

The container's symmetry about z = 0 obviates the need to follow the reflections of 
the characteristics generated by A B  till one of the characteristics returns to the 
boundary near A .  Because of this symmetry, q is either an odd function or an even 
function of z, so that either q = 0 or qs = 0 on z = 0.  Consequently, on z = 0, 

(A+\  = IA-1, nvb+ = -nvb-+N*n,  (5.15) 

where N* is an odd or even integer according as q is an odd or even function of z. The 
negative sign is appropriate in (5.15) because (a,.+) (v,.-) < 0 on z = 0 (cf. (4.9)). It 
follows from the characteristic relations (4.9) that 

~ A + ( T , Z ) /  = ~ A - ( T ,  - z ) l ,  nv+(r , z )  = -nv-(r ,  -z)+t*n,  (5.16) 

where nv* = nuk + arg P+ In particular 

nvb+(zg) = -nvb-( -zg) + N*R, (5.17) 

where nvbh represents the value of the phase nv* at the boundary. Since - zD - zA is 
small, the phase difference - vb+(zg) - vb-(zA) can be approximated by 

(zg + z,)~ - N*nn-l+ O( if3) . ( z A )  +- 
2 dz$ 

(5.18) 

After combining the changes in phase that occur along the characteristics AB and BD 
and on reflection at  B and D, we find that 

-nvb+ (zg) - nvb- (2,) = 1Mn + L + O(h) + O(n-l) ,  (5.19) 

M = k+i+4N1+2Nc-N* ,  (5.20) 
where 

(5.21) 

The N, in (5.20) is such that 2"' - 1 is the arbitrary odd integer in the phase relation 
(4.31). The leading terms of (5.13)) (5.18) and (5.19) yield the approximation 

dvb-(z)/dz = Mn/n&A,(z),  (5.22) 

which, together with (5.14), gives 

(5.23) 

This equation determines the phase a a t  the boundary to a first approximation apart 
from certain constants. To encompass significant proportional changes in k, the 
number M defined by (5.20) must be a t  least as large as O ( k ) .  Accordingly, we allow 
6 to be as large as O(h) .  The phase a at interior points can be calculated from the 
relations (4.9) and its boundary values (5.23). 

The boundary of the quiescent zone is now determined to a leading order by 

zT = ZA - s ( z A ) ,  TT = 2sk{z,s'(z,) + S(z,)}/{Mn[ 1 + ~ ' ( Z A ) ] ) ,  (5.24) 
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as may be inferred from (4.37), (5.5) and (5 .23 ) .  For example, the boundary of the 
quiescent zone for the sphere (S(z) = (1  - z2)4) becomes 

2; + ( M m T / 2 S k ) 2  = 2, (5 .25 )  

which is consistent with the result (3.20) got from the exact solution. 
The procedure by which the approximation (5 .23 )  to the phase was obtained does 

not apply to points on the boundary near z = 0. The negative trajectories that  meet 
the boundary near z = 0 also meet the boundary near the z axis and here they curve 
rapidly and, if near enough to the caustic, they reflect as negative trajectories rather 
than as positive trajectories. The rapid curvature invalidates the geometrical approxi- 
mation for the deviation (5.13) of - z D  from zA and back reflection as a negative 
trajectory invalidates the phase reflection relations used. Despite these defects in the 
derivation, however, the result (5 .23 )  appears to be correct for points zA near z = 0, 
provided that the container has a high enough order of contact with the sphere 
r2+ 22 = 1 near the z axis. For the sphere, the phase v- a t  the boundary is given by 

nv,- = constant f no ~ o s - ~  [noz (n i  - k2)-4] T k COS-1 [kz(nt  - p) - t  (1 - 9-41, (5 .26 )  

where no = n + 8. The expansion of the variable part of this expression in powers of 
n-l and of h = k / n  for large n and small h converges uniformly for 1 < z < 1.  Pursuing 
further the asymptotic expansions of the exact solution (3.8) for the sphere, we find 
that dvb-/dx has an expansion in n-l and in h which is uniform for - 1 < z < 1, and S 
has an expansion in powers of n-l and A. For the class of contpiners being considered 
in this section'the ray procedure can be expected to generate eipansions for dvb-/dz in 
n, h and S which are uniform in z for 0 < z < z r .  Moreover vb-(zA) is thereby deter- 
mined apart from constants by the geometry of the container near zA,  zB and z D  
independently of the geometry elsewhere. A reconstructed procedure for finding Vb- ( zA)  
when Z, is small, with suitably amended formulae to replace the original estimate of 
- zD - zA and the original reflection relations, would be expected to retain this 
property. So, if the sphere has contact of a sufficiently high order near r = 0 and z = 0 
with the container under consideration the (truncated) asymptotic expansion of 
v&,) in n, h and Sfor the container should be the same near z,  = 0 as for the sphere. 
The case of the sphere shows this expansion to be uniform with respect to z near z = 0 
after 6 had been replaced by its expansion in powers of n-1 and A. Consequently, unless 
the relation of 6 to h for the sphere happens to remove non-uniformities in the expan- 
sion, the expansion must also be uniform near z = 0 for the sphere. We shall assume 
that this removal of non-uniformities does not in fact occur and that the ray procedure 
for 0 < z < z: does in fact generate the correct expansion in n-1, h and 6 for 0 6 z < $. 
The question of how close the contact of sphere and container near z = 0 needs to be 
to achieve a given accuracy in the expansion is left unsettled. (The symmetry of the 
container (r = S( & z ) ,  z = & S(r ) )  ensures that the contacts near r = 0 and z = 0 are 
equally precise.) The ray procedure also needs scrutiny whep zA is near the critical 
circle x = z:, but, so far as it has been taken, the procedure appears to  be self- 
consistent in this neighbourhood. 

Thus far the parameter S which defines the eigenfrequency has remained unspeci- 
fied. To determine 6, we impose the condition that 

nv,- (z?) - m+,- (0) = &Won + o( I f ,  (5 .27 )  

where M ,  = 2Nc- N*  - Nl. The value of vb- a t  the critical circle was given by (4.36). 
F L \ I  1 0 5  15  
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I t s  value a t  z = 0 follows from (4.31), (5.12) and (5.17)) the odd integer in equation 
(4.31) being designated as 2N,- 1 for the range z: < z < zf between the critical 
circles. To apply the condition (5.27) we need to estimate nvb-(z) with an error o(1). 
On returning to the equations (5.13), (5.18) and (5.19) and substituting where neces- 
sary for ri- and ri- from the first approximation (5.22), we get 

nv*-(zA) = 8-1 / * A  ( M n  + L)  A;1 dz + M n  4 log Ao(za) - j z A  A, A;2 ,121 + o( 1 ) .  (5.28) 

Thence. 

S = 2M[ /:A;' dz] / { M o  + M log (2/A,,($')) 

The eigenfrequency w is related to S by 

w = 4 2  q i - ~ s + g ~ 2 + 0 ( ~ 3 ) 1 ,  (5.30) 

and this relation together with (5.14) and (5.29) determines the eigenfrequencies near 
, / 2  Cl in terms of the shape r = X(z) of the boundary. The leading approximation 

o = 4 2  fi [l-MM;,/:A;ldz], (5.31) 

in which the arbitrary integers M ,  and M are O(n) and O ( k ) ,  respectively, shows that 
the distribution of the values of w near J2 L2 is similar to  that of the rational numbers. 

To a first approximation the amplitude parameter IA,] is constant along the 
trajectories and remains constant on reflection a t  the boundary. Hence I A,] is approxi- 
mately constant throughout the oscillatory region, save near the caustic where the 
amplitude equation (4.7) fails. It follows from (4.9) that  the amplitude / A ]  is approxi- 
mately constant in the oscillatory region save where r = O(h).  The breakdown in the 
ray procedure for negative trajectories meeting the boundary near the axis z = 0 is not 
expected to impair this conclusion, provided the container and sphere have a close 
enough contact near :: = 0, for the same reasons as were advanced in relation to the 
corresponding breakdown for the phase. 

It might be added that the above results for the eigenfrequencies, the phase cr a t  
the boundary and the amplitude A agree with their counterparts got from the exact 
solution for the sphere. 

6. Dichotomy of modes in two dimensions and for k < n 

The distinction between modes referred to  above is fundamental and is worth 
elaborating. 

We begin by returning to  two-dimensional modes in smooth, convex rigid con- 
tainers, mentioned in the introduction, for which a similar but sharper distinction 
can be drawn. The distinction follows from a consideration of the successive reflection 
points a t  the boundary of a characteristic x-az = constant, say, that  leaves the 
boundary a t  a point Po (and reflects as a characteristic x + ax = constant, and so on). 
Let P,, P., . . ., P, denote every second reflection point and let O,, O,, .. ., 8, denote the 
corresponding polar angles defined cyclically (with the co-ordinate origin 0 in the 
fluid) so that. O,t < < 0, + 27r. Then the relation 0, = 01(0,, a) for varying 8, defines 
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a smooth, one-one sense-preserving map of the boundaryon to itself.For a sufficiently 
smooth boundary several results, listed below, ensue. The first two of these are merely 
preliminary. The next two underlie more directly the distinction in question. 

(i) There is a number 
r ( a )  = lim 8,/27rn 

whose value is independent of the initial point Po (Coddington & Levinson 1955). The 
number r depends here on the ray gradient a(w) ,  and hence on the frequency w ,  and 
the shape of the container. 

(ii) The number r (a )  varies continuously with a. (This follows from a result stated 
by Poincard, which is proved by Arnol’d (1965).) 

When r ( a )  is a rational number (m/n, say, where m and n are co-prime), then either 
( 1 )  there is a finite number n of discrete characteristic paths that close after 2n - 1 

n - m  

reflections (sothat P, = Po), 
or 

point Po (John 1941). If r(a) is irrational no characteristic paths close. 
(2) every characteristic path closes after 2n - 1 reflections regardless of its initial 

Closure is represented by the  equation 

60 = 8,(6,, w ) .  (6.1) 

Since the gradients k a(@) of the characteristics vary smoothly with w (for IwI < 2 Q) 
and the boundary is smooth, the end value 6, varies smoothly with o and B0 over 
finite ranges of each. So, if (6.1) has discrete roots for 8,, they generally occur for con- 
tinuous ranges of w ;  which means that the discrete closure topology ( I ) ,  if it occurs, 
generally occurs for one or more continuous frequency bands. Within each band n 
remains fixed. Hence r ( w )  also remains fixed, since it is necessarily a rational number. 
W7e shall presume that r ( w )  is not normally constant for the frequencies w2, lwzl < 0, 
outside these bands. Every ray path then closes for a densely distributed subset w z  
of the frequencies w2.  

In  the case of discrete closure, the characteristic paths, when continued in either 
direction, ultimately converge to one or other of the closed paths, and this con- 
vergence causes an infinity in the gradient of the stream function normal to the closed 
path. Moreover a narrow enough pencil of neighbouring paths does not retrace or 
overlap its earlier parts as it cycles (in either direction), so that the values $o of the 
stream function 9 = $o(x - az) - $o(x + az) can be assigned arbitrarily to each path 
of the pencil. Thus, the corresponding modes occur for discrete frequency bands, 
have infinite internal velocities on the closed paths and are in part indeterminate. 
Modes in effect of this type were discussed by Stewartson (1971,1972) for oscillations 
trapped near the equator of a thin spherical annulus, the oscillations being two- 
dimensional within the approximation he considered. 

In the second topology the values $o can be assigned arbitrarily to each closed path. 
So the corresponding modes are indeterminate and can be continuous. 

The ray patterns of the axisymmetric modulated waves can be classified in the same 
way. For k = 0, the rays in an axial plane are the lines z k a r  = constant and they 
effectively reflect a t  the axis, as was noted above. This reflection can be represented 
by using the two halves (q5 = 0, q5 = n, say) of an axial cross-section and continuing 
each ray straight across the axis, The pattern of rays after successive reflectlions a t  the 

15-2 
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boundary and the axis then becomes identical with that (after boundary reflections 
only) in a two-dimensional flow with rays x f ax = constant and a boundary 
x = S(z) .  Hence, a rotation number r ( a )  can be defined just as in two dimensions 
and precisely the same classification of frequencies and closed paths follows. 

Small changes in k/n  afiect the ray geometry only slightly. If discrete closure occurs 
for k = 0 it can be expected to occur a t  the same frequency for small enough kin, 
provided that 8,(B,, o, kln) varies sufficiently smoothly with kin, since the roots 8, of 
the equation (6.1) can then be expected to  vary continuously with k /n .  The previous 
reasoning concerning the indeterminacy and singularity of the stream function in the 
case of discrete closure in two dimensions now applies to the phase of the modulated 
waves: whilst, to  afirst approximation, their amplitude 1 A 1 can be taken to  be uniform. 
Thence, we infer that for h/n 4 1 (and k 9 I ) ,  there are in general discrete frequency 
bands in the range lo\ < 252 for which a finite number of the ray paths close after a 
sufficient number of reflections. 

Hence for k/n < 1, as in two dimensions, there are in general continuous bands of 
frequencies for which a finite number of ray paths close and there are (apparently) 
possible modes corresponding to  each of these frequencies that have infinite velocities 
on the closed paths and are in part indeterminate. 

For small enough values of kin, every frequency w2 ( ( w z l  < 2Q) outside all these 
bands must be close to a value for which all the ray paths close when k = 0. The 
method for determining the modes proposed in 5 5 then applies and there is a prospect, 
subject to  qualifications noted below, of continuous, well-determined modulated- 
wave modes for a densely distributed subset of the frequencies w2. 

7. Conclusions 
The explicit solutions for free oscillations in the cylindrical cans and in the sphere 

show that the modes with a large azimuthal wavenumber k and a large meridional 
wavenumber n comprise modulated waves (as represented in (4.1)). These waves 
occupy the whole flow except for a quiescent zone about the axis of width O ( k / n ) .  The 
velocities are in the main of a uniform order of magnitude (0( 1) say) in the modulated 
wave and are smaller by a factor of exponential order (e-lo(n)l) in the quiescent zone. 
(When k = O ( i )  and n 9 i, the quiescent zone is replaced by a thin zone of width 
O(n-1) in which the velocity is amplified to O(n4) by radial focusing (Wood i9773).)  
When k/n  N 1, the modulated waves in the sphere are confined to the neighbourhood 
of the equator, the eigenfrequency w being then < 52. 

The solutions for the cylindrical annular containers conform with one's natural 
expectation that the imposition of an internal boundary into the quiescent zone (or 
any other alteration of the solid boundary of this zone) would only slightly perturb 
the associated modulated wave. Consequently, the spherical annulus in particular 
can be expected to  have modulated-wave modes almost identical to  those in the 
sphere, provided that the inner sphere lies wholly in the quiescent zone. 

The velocity of the modulated waves in a sphere is magnified by a factor O ( n )  in the 
neighbourhood of the critical circles (where the characteristic cones r & a x  = constant 
touch the sphere). The magnification is caused by the relative crowding of the ray 
paths in this neighbourhood after being reflected nearly parallel to  the boundary. A 
similar amplification was found by Stewartson & Rickard (1969) for modes in a thin 
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spherical annulus. In  their analysis, the velocity was infinite on the characteristic 
cones that touch the inner sphere. (Subsequent papers by Walton (1975) and by 
Stewartson & Walton (1976) allowed for viscosity and stratification.) The velocity 
a t  the critical circles C is finite here, because the phases g at C take values that, in the 
absence of crowding, would produce a node there; and the zero thus induced cancels 
the infinity that would otherwise be produced by the crowding of characteristics. 

The postulate that modulated-wave modes represented as in (4.1) exist in smooth, 
convex, axisymmetric containers of arbitrary shape leads to a similar quiescence near 
the axis and velocity magnification by a factor O(n)  near the critical circles. Indeed a 
quiescent axial zone is a general characteristic of modulated waves varying as 
exp [i(kq5 + nX(r ,  z ) ) ]  ( k ,  n 9 1)  and propagating relative to a steady, homogeneous 
medium that is isotropic in planes z = constant (so that their dispersion relations have 
the same form D(Xs, (VZ)2-CE,w) = 0 as for inertial waves). In  all such cases, the 
ray paths of the component of the group velocity in the meridional plane are hyper- 
bolic and the width of the quiescent zone is O(k /n ) ,  provided that (VX)2-X:22 = O(1). 
The velocity amplification near the critical circles C occurs in the same way as for a 
sphere, though the values of the phases v at C ,  which serve to avert an infinity in the 
velocity, are now derived on the apriori assumption that the modulated wave incident 
obliquely a t  C is continuous. The approximation (4.24) derived for the transition 
region between the quiescent zone and the modulated wave shows this region to have 
a width O(n-3) and velocities typically O(n-i)  times those in the modulated wave. 

The amplitude and the phase a t  the boundary and the eigenfrequencies w were 
determined explicitly for k / n  < 1, w N 4 2  Q and for containers whose meridional 
cross-sections have mirror symmetry about the lines z = 0 and x = f r ;  and the 
results obtained check with those derived from the exact solutions for the sphere. The 
eigenfrequencies are distributed like rational numbers. For k l n  g 1 (with k 9 1))  the 
method used to determine the modulated waves promises to apply, in principle, to 
smooth, convex axisymmetric containers of arbitrary shape and to the whole of the 
frequency range for which continuous modes appear admissible. When k / n  is not 
small, the determination of the modes presents unresolved difficulties. Correspond- 
ingly, there is less support when k / n  is not small, than when k / n  g 1, for the assump- 
tion that modulated wave modes represented as in (4.1) exist in non-cylindrical 
and non-spherical geometries. 

When k / n  is small enough, the frequency range IwI < 2 0  divides into two parts. 
One part comprises one or more continuous bands for which a finite number of the 
ray paths in an axial plane close after sufficiently many reflections a t  the boundary. 
For each frequency in these bands there are apparently modes which have infinite 
velocities on the closed paths and which are in part indeterminate. 

For a given small value of k / n  every value of the frequency w2 (Iw21 < 2Q) outside 
these frequency bands is generally close to a value (wo)  for which all the ray paths 
close when k = 0. This near closure of all the ray paths allows the rate of change in the 
phase g of (one of the two families of) the modulated waves around the boundary to 
be related (as in 5.4) to the geometry of the ray paths, to the frequency increment 
w - wo and to k / n .  A similar relation holds for the amplitude 1.4 1 of the (radially scaled 
pressure q of the) waves, which happens to be uniform to first order for small k / n .  
The amplitudes and phases so determined are continuous save possibly near the poles 
and the critical circles. Thus, continuous modulated waves, like those in a sphere, can 
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be constructed provided that singularities near the poles and the circles can be avoided. 
In  the explicit determination, made in $ 5  and noted above, singularities near the 
pole were obviated by assuming a sufficiently close contact of the container with the 
sphere r2 + z2 = 1 near the poles and exploiting the known continuity of the modes in 
a sphere. The argument used in this connection relied on the behaviour of the waves 
near the poles being closely related to the local geometry and it can be expected to 
generalize to other containers. An infinity in velocity a t  the critical circles was avoided 
by means of a suitable choice of phase (4.36), which helped fix the eigenfrequencies, 
and no other singularities a t  the critical circles were then apparent to the accuracy of 
the approximation used. Whether the eigenfrequencies can be similarly specified 
and singularities a t  the critical circles avoided in configurations with more complex 
closed ray paths when k = 0 requires further study. 

Finally, the author gratefully acknowledges the help and hospitality he received 
while a t  University College London, where the main part of this work was done. 
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